3.1.70 \(\int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx\) [70]

3.1.70.1 Optimal result
3.1.70.2 Mathematica [C] (verified)
3.1.70.3 Rubi [A] (verified)
3.1.70.4 Maple [B] (verified)
3.1.70.5 Fricas [A] (verification not implemented)
3.1.70.6 Sympy [F]
3.1.70.7 Maxima [F]
3.1.70.8 Giac [A] (verification not implemented)
3.1.70.9 Mupad [F(-1)]

3.1.70.1 Optimal result

Integrand size = 32, antiderivative size = 113 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=\frac {a \arctan \left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{8 \sqrt {2} c^{5/2} f}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}+\frac {a \tan (e+f x)}{8 c f (c-c \sec (e+f x))^{3/2}} \]

output
1/16*a*arctan(1/2*c^(1/2)*tan(f*x+e)*2^(1/2)/(c-c*sec(f*x+e))^(1/2))/c^(5/ 
2)/f*2^(1/2)-1/2*a*tan(f*x+e)/f/(c-c*sec(f*x+e))^(5/2)+1/8*a*tan(f*x+e)/c/ 
f/(c-c*sec(f*x+e))^(3/2)
 
3.1.70.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.48 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.53 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=-\frac {a \operatorname {Hypergeometric2F1}\left (\frac {3}{2},3,\frac {5}{2},\frac {1}{2} (1+\sec (e+f x))\right ) (1+\sec (e+f x)) \tan (e+f x)}{12 c^2 f \sqrt {c-c \sec (e+f x)}} \]

input
Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x]))/(c - c*Sec[e + f*x])^(5/2),x 
]
 
output
-1/12*(a*Hypergeometric2F1[3/2, 3, 5/2, (1 + Sec[e + f*x])/2]*(1 + Sec[e + 
 f*x])*Tan[e + f*x])/(c^2*f*Sqrt[c - c*Sec[e + f*x]])
 
3.1.70.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {3042, 4445, 3042, 4283, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x) (a \sec (e+f x)+a)}{(c-c \sec (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )}{\left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4445

\(\displaystyle -\frac {a \int \frac {\sec (e+f x)}{(c-c \sec (e+f x))^{3/2}}dx}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

\(\Big \downarrow \) 4283

\(\displaystyle -\frac {a \left (\frac {\int \frac {\sec (e+f x)}{\sqrt {c-c \sec (e+f x)}}dx}{4 c}-\frac {\tan (e+f x)}{2 f (c-c \sec (e+f x))^{3/2}}\right )}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \left (\frac {\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {c-c \csc \left (e+f x+\frac {\pi }{2}\right )}}dx}{4 c}-\frac {\tan (e+f x)}{2 f (c-c \sec (e+f x))^{3/2}}\right )}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle -\frac {a \left (-\frac {\int \frac {1}{\frac {c^2 \tan ^2(e+f x)}{c-c \sec (e+f x)}+2 c}d\frac {c \tan (e+f x)}{\sqrt {c-c \sec (e+f x)}}}{2 c f}-\frac {\tan (e+f x)}{2 f (c-c \sec (e+f x))^{3/2}}\right )}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {a \left (-\frac {\arctan \left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2} \sqrt {c-c \sec (e+f x)}}\right )}{2 \sqrt {2} c^{3/2} f}-\frac {\tan (e+f x)}{2 f (c-c \sec (e+f x))^{3/2}}\right )}{4 c}-\frac {a \tan (e+f x)}{2 f (c-c \sec (e+f x))^{5/2}}\)

input
Int[(Sec[e + f*x]*(a + a*Sec[e + f*x]))/(c - c*Sec[e + f*x])^(5/2),x]
 
output
-1/2*(a*Tan[e + f*x])/(f*(c - c*Sec[e + f*x])^(5/2)) - (a*(-1/2*ArcTan[(Sq 
rt[c]*Tan[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sec[e + f*x]])]/(Sqrt[2]*c^(3/2)*f 
) - Tan[e + f*x]/(2*f*(c - c*Sec[e + f*x])^(3/2))))/(4*c)
 

3.1.70.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4283
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[b*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] 
 + Simp[(m + 1)/(a*(2*m + 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 
1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1) 
] && IntegerQ[2*m]
 

rule 4445
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + 
f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m + 1))), 
 x] - Simp[d*((2*n - 1)/(b*(2*m + 1)))   Int[Csc[e + f*x]*(a + b*Csc[e + f* 
x])^(m + 1)*(c + d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] && LtQ[m, -2^ 
(-1)] && IntegerQ[2*m]
 
3.1.70.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(268\) vs. \(2(94)=188\).

Time = 4.19 (sec) , antiderivative size = 269, normalized size of antiderivative = 2.38

method result size
default \(-\frac {a \sqrt {2}\, \left (\arctan \left (\frac {1}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right ) \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )-\left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \left (1-\cos \left (f x +e \right )\right )^{2} \sin \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )-2 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \sin \left (f x +e \right )^{3}\right )}{16 c^{2} f \sqrt {\frac {c \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \left (1-\cos \left (f x +e \right )\right )^{3} \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\) \(269\)
parts \(\frac {a \sqrt {2}\, \left (1-\cos \left (f x +e \right )\right ) \left (\left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {5}{2}} \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-\left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}+3 \arctan \left (\frac {1}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right ) \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}-2 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {5}{2}}+3 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}\right ) \csc \left (f x +e \right )}{32 f \left (\frac {c \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )^{\frac {5}{2}} \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {5}{2}}}-\frac {a \sqrt {2}\, \left (1-\cos \left (f x +e \right )\right ) \left (5 \arctan \left (\frac {1}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right ) \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}-5 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}+5 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (1-\cos \left (f x +e \right )\right )^{4} \csc \left (f x +e \right )^{4}-2 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}}\right ) \csc \left (f x +e \right )}{32 f \left (\frac {c \left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )^{\frac {5}{2}} \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {5}{2}}}\) \(586\)

input
int(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(5/2),x,method=_RETURNVER 
BOSE)
 
output
-1/16*a/c^2/f*2^(1/2)/(c*(1-cos(f*x+e))^2/((1-cos(f*x+e))^2*csc(f*x+e)^2-1 
)*csc(f*x+e)^2)^(1/2)/(1-cos(f*x+e))^3/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^( 
1/2)*(arctan(1/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2))*(1-cos(f*x+e))^4*c 
sc(f*x+e)-((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(3/2)*(1-cos(f*x+e))^2*sin(f*x 
+e)+((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*(1-cos(f*x+e))^4*csc(f*x+e)-2* 
((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(3/2)*sin(f*x+e)^3)
 
3.1.70.5 Fricas [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 405, normalized size of antiderivative = 3.58 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=\left [-\frac {\sqrt {2} {\left (a \cos \left (f x + e\right )^{2} - 2 \, a \cos \left (f x + e\right ) + a\right )} \sqrt {-c} \log \left (-\frac {2 \, \sqrt {2} {\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt {-c} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} - {\left (3 \, c \cos \left (f x + e\right ) + c\right )} \sin \left (f x + e\right )}{{\left (\cos \left (f x + e\right ) - 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 4 \, {\left (3 \, a \cos \left (f x + e\right )^{3} + 4 \, a \cos \left (f x + e\right )^{2} + a \cos \left (f x + e\right )\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{32 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}, -\frac {\sqrt {2} {\left (a \cos \left (f x + e\right )^{2} - 2 \, a \cos \left (f x + e\right ) + a\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {c} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, {\left (3 \, a \cos \left (f x + e\right )^{3} + 4 \, a \cos \left (f x + e\right )^{2} + a \cos \left (f x + e\right )\right )} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{16 \, {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) + c^{3} f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(5/2),x, algorithm= 
"fricas")
 
output
[-1/32*(sqrt(2)*(a*cos(f*x + e)^2 - 2*a*cos(f*x + e) + a)*sqrt(-c)*log(-(2 
*sqrt(2)*(cos(f*x + e)^2 + cos(f*x + e))*sqrt(-c)*sqrt((c*cos(f*x + e) - c 
)/cos(f*x + e)) - (3*c*cos(f*x + e) + c)*sin(f*x + e))/((cos(f*x + e) - 1) 
*sin(f*x + e)))*sin(f*x + e) - 4*(3*a*cos(f*x + e)^3 + 4*a*cos(f*x + e)^2 
+ a*cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e)))/((c^3*f*cos(f*x 
 + e)^2 - 2*c^3*f*cos(f*x + e) + c^3*f)*sin(f*x + e)), -1/16*(sqrt(2)*(a*c 
os(f*x + e)^2 - 2*a*cos(f*x + e) + a)*sqrt(c)*arctan(sqrt(2)*sqrt((c*cos(f 
*x + e) - c)/cos(f*x + e))*cos(f*x + e)/(sqrt(c)*sin(f*x + e)))*sin(f*x + 
e) - 2*(3*a*cos(f*x + e)^3 + 4*a*cos(f*x + e)^2 + a*cos(f*x + e))*sqrt((c* 
cos(f*x + e) - c)/cos(f*x + e)))/((c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x 
+ e) + c^3*f)*sin(f*x + e))]
 
3.1.70.6 Sympy [F]

\[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=a \left (\int \frac {\sec {\left (e + f x \right )}}{c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec {\left (e + f x \right )} + c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx + \int \frac {\sec ^{2}{\left (e + f x \right )}}{c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c} \sec {\left (e + f x \right )} + c^{2} \sqrt {- c \sec {\left (e + f x \right )} + c}}\, dx\right ) \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))**(5/2),x)
 
output
a*(Integral(sec(e + f*x)/(c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x)**2 - 
 2*c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x) + c**2*sqrt(-c*sec(e + f*x) 
 + c)), x) + Integral(sec(e + f*x)**2/(c**2*sqrt(-c*sec(e + f*x) + c)*sec( 
e + f*x)**2 - 2*c**2*sqrt(-c*sec(e + f*x) + c)*sec(e + f*x) + c**2*sqrt(-c 
*sec(e + f*x) + c)), x))
 
3.1.70.7 Maxima [F]

\[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=\int { \frac {{\left (a \sec \left (f x + e\right ) + a\right )} \sec \left (f x + e\right )}{{\left (-c \sec \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(5/2),x, algorithm= 
"maxima")
 
output
integrate((a*sec(f*x + e) + a)*sec(f*x + e)/(-c*sec(f*x + e) + c)^(5/2), x 
)
 
3.1.70.8 Giac [A] (verification not implemented)

Time = 1.18 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.92 \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=-\frac {\sqrt {2} {\left (a \sqrt {c} \arctan \left (\frac {\sqrt {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c}}{\sqrt {c}}\right ) + \frac {{\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right )}^{\frac {3}{2}} a c - \sqrt {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c} a c^{2}}{c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}}\right )}}{16 \, c^{3} f} \]

input
integrate(sec(f*x+e)*(a+a*sec(f*x+e))/(c-c*sec(f*x+e))^(5/2),x, algorithm= 
"giac")
 
output
-1/16*sqrt(2)*(a*sqrt(c)*arctan(sqrt(c*tan(1/2*f*x + 1/2*e)^2 - c)/sqrt(c) 
) + ((c*tan(1/2*f*x + 1/2*e)^2 - c)^(3/2)*a*c - sqrt(c*tan(1/2*f*x + 1/2*e 
)^2 - c)*a*c^2)/(c^2*tan(1/2*f*x + 1/2*e)^4))/(c^3*f)
 
3.1.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x) (a+a \sec (e+f x))}{(c-c \sec (e+f x))^{5/2}} \, dx=\int \frac {a+\frac {a}{\cos \left (e+f\,x\right )}}{\cos \left (e+f\,x\right )\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \]

input
int((a + a/cos(e + f*x))/(cos(e + f*x)*(c - c/cos(e + f*x))^(5/2)),x)
 
output
int((a + a/cos(e + f*x))/(cos(e + f*x)*(c - c/cos(e + f*x))^(5/2)), x)